
Solving Monte-Carlo Method by Using GPU and
CPU.

Jameer Kotwal1 , Dr. Sachin D Babar2
Sinhgad Institute Of Technology, Lonavala, Pune, India.

Abstract. An arrival of high performance computing for a big data
and graphics processing unit(GPU) used for fast rendering, 3D scenes
etc present an huge computational resources for big data that requires
more computational power for processing the data parallel for robust
and giving the correct data analysis. CUDA (Compute Unified Device
Architecture) is a platform built by NVIDIA for implementing the
task parallel. World is moving very fast from serial execution to
parallel execution. One of the experimental result is shown in this
paper by solving the monte carlo method for calculation of pi(). The
calculation of pi code is executed on CPU and GPU. Here in this paper
the measure factor is time required for executing the pi code on CPU
well as on GPU.
Keywords: GPU, CUDA programming, C programming,
Monte Carlo method, parallel programming.

1 INTRODUCTION
The use of GPU is used to accelerate the level of

executing the code in parallel. Here in this paper it show
how the Monte Carlo method is used to solve the
calculation of pi() in parallel on GPU as well as serial on
CPU. Monte Carlo is used to solve the computational
problems that depend on repeated random number of
sampling results. Monte Carlo methods is classify into
three main classes:- numerical integration, probability
distribution and optimization. Monte Carlo methods are
very important for getting the simulation results with many
coupled degrees of freedom such as fluids, disordered
materials, strong coupling etc.

2 OVERVIEW OF PARALLEL AND SERIAL EXECUTION
GPU computational provides more powerful solving
techniques than the CPU computational. Few year ago, the
code is executed on CPU In the form of serial execution.
CPU architecture it works completely like SISD(single
instruction single data) programming style. While
executing the code on cpu it requires more time to execute
the code. But here today the drastic change is made in
technology to go for execution of code in parallel.

Fig 1. Serial Execution.

There are so many programming languages that work’s
on parallel execution like OpenACC, OpenMP, CUDA,
OpenGL etc. But NVIDIA had implemented a good

platform for executing the code parallel by CUDA
programming on GPU(Graphical Processing Unit). GPU
works on SIMD (Single Instruction Multiple Data)
programming style for execution. In parallel execution,
more than one task we can execute parallel by using
multiple threads in the form of cores (processor).

Fig 2. Parallel Execution.

3 GPU ARCHITECTURE
The GPU architecture has number of processor (cores)

that work together to execute the data/code given in the
application. While compare to GPU, the CPU having less
cores and ALU(Arthimetic and Logical Unit). But in GPU,
it have more number of cores and ALU to process the data
fast. The green color show’s the ALU. In GPU, cache
memory is provided less compare to CPU.

Fig 3. CPU vs GPU.

3.1 CUDA Process Flow
CUDA was developed in 2006 by NVIDIA company. In

this section, we have a short look on how the programming
features provided by CUDA. There are number of features
are provided by CUDA to the developer. Some of them like
thread, streaming processor, streaming multiprocessor etc.
The diagrammatic structure is shown below :-

Jameer Kotwal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (3) , 2017, 324-326

www.ijcsit.com 324

Fig 4. CUDA Processing Flow.

1. Process Flow

The CUDA program execution is done in two parts:
 Host.
 Device.

Host is referred to GPU and Device part is referred to
CPU. Program is basically interacting with both the host
and device during execution. When we are executing the
program/code with the help of CPU and GPU the following
step is as:

 The program is first copied into the cpu memory.
 Then the compiler bifurcate the serial code and

parallel code. Mainly the code is composed of
serial code and parallel code

 The serial code is executed on CPU and the
parallel code is executed on GPU. The parallel
code is copied from CPU memory to GPU
memory by using function HostToDevice().

 The GPU compute the code or process the code
and then again copy back from GPU memory to
CPU memory by using function DeviceToHost().

 And at last the result is display with the help of
CPU.

4 CUDA ARCHITECTURE
In this architecture, the main role is played by threads.

Threads is used to execute the code parallel on streaming
multiprocessor. In Streaming multiprocessor, the n number
of streaming processor is there. SP it acts as a threads. A
group of 32 threads is 1 wrap. For creating the thread, the
kernel function is launch, this function is used to create the
grid,block and threads. The thread is run in the block, block
is in the grid and grid is launch on SM. The kernel function
code is <<< >>>.

Fig 4. CUDA Architecture.

5 GPU VS CPU EXPERIMENT RESULT.
For illustration purpose, we implemented a calculation

of pi by using monte carlo method.

 Serial code execution on CPU
To set up the exeution od pi on CPU, randomly
located points is generated within a given square
which has a circle surface within it. Here it
generates a more number of random number and
checks if the x,y co-ordinates points is inside the
circle. The p inside the circle to the total number
of points tried is calculated. To adjust the number
the pi is multiplied by 4 to get the approximate
result of pi. Using this ratio, the approximation of
π can be computed by assuming that P approaches
the value of ratio of the area of the circle to the
area of the square when the number of points,
niter, is large

 Begin Program For Monte carlo
 double niter = 10000000;
 double x,y;
 int i;
 int count=0;
 double z;
 double pi;
 srand(time(NULL));

 for (i=0; i<niter; ++i)
 {
 x = (double)random();
 y = (double)random();
 z = sqrt((x*x)+(y*y));
 if (z<=1)
 {
 ++count;
 }
 }

 pi =
((double)count/(double)niter)*4.0;
 WriteLn (pi);
END.

 Parallel code execution on GPU
CUDA is used for execution of code parallel and it
is developed by NVIDIA that extends C. In
CUDA, the programmer defines the kernel
function to launch millions of threads to execute
the code. The programmer very keen to launch the
kernel function by keeping in mind how many
threads and blocks of threads they want to launch
on GPU.
__global__ void kernel(int*
count_d, float* randomnums)

 {
 int i;
 double x,y,z;
 int tid = blockDim.x *
blockIdx.x + threadIdx.x;
 i = tid;
 int xidx = 0, yidx = 0;

Jameer Kotwal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (3) , 2017, 324-326

www.ijcsit.com 325

 xidx = (i+i);
 yidx = (xidx+1);

 x = randomnums[xidx];
 y = randomnums[yidx];
 z = ((x*x)+(y*y));

 if (z<=1)
 count_d[tid] = 1;
 else
 count_d[tid] = 0;
 }

 The Kernel function for this above code is loaded: Kernel
<<<blocks, threads>>>. In this, 100 blocks is created and
in each blocks 1000 threads is created for executing the
code.

The NVCC(Nvidia Compiler For C) compiler bifurcate the
serial code and parallel code. By using __global__
decorator the compiler comes to know that the code is
parallel and execute on GPU. GPU does not have input and
output devices. CUDA launch the thread in x and y co-
ordinates so that the threadIDx.x ,threadIdx.y variable is
defined. We can define the x and y co-ordinates for block
also.

For allocating the memory in the CPU the function
CUDAMalloc() is used and for releasing the memory we
use CUDAfree().For copying the code from CPu to GPU
memory the function HostToDevice() is used. And for
copying back the result from GPU to CPU memory the
function DevicetoHost() is used.

For allocating the memory the following code is :
cudaMalloc((void**)&count_d,
(blocks*threads)*sizeof(int));

For copying the data in between CPU an GPU the code is:
cudaMemcpy(count,count_d,blocks*threads*
sizeof(int), cudaMemcpyDeviceToHost);
For releasing the memory from the GPU
the code is:
cudaFree(randomnums);
cudaFree(count_d);

6. CONCLUSION:
After the comparison of result between the CPU and

GPU. It is clear that the future of parallel processing is very
much in the hands of the NVIDIA. Because CUDA
programming gives a very more powerful result then
compare to CPU for calculation of pi. CUDA programming
gives a more prominent result for pi. We can solve the large
number of problems with huge data by using CUDA. The
IT industry is also diverting from serial computing to
parallel computing. Everyone taking the challenges in the
upcoming technology, both software and hardware are
taking into the direction of parallel processing. The GPUs

are gaining more popularity in the scientific computing
community due to their high processing capability and easy
availability as we have demonstrated throughout the paper,
and are becoming the preferred choice of the programmer
due to the support offered for programming by models such
as CUDA.

REFERENCES

1. Anthony Lippert – “NVidia GPU Architecture for General Purpose
Computing”.

2. Wikipedia, “Pthreads,” Pthreads, 2013. [Online]. Available:
http://en.wikipedia.org/wiki/POSIX_Threads. [Accessed: 11-Dec-
2013].

3. A. Nin, J. Diaz, and C. Mun, “A Survey of Parallel Programming
Models and Tools in the Multi and Many-Core Era,” IEEE Trans.
Parallel Distrib. Syst., vol. 23, no. 8, pp. 1369–1386., 2012.

4. J. Cook, “Pthreads, Tutorials and Tools,” Tutorials and Tools,
Computer Science Department, New Mexico University. [Online].
Available:
http://www.cs.nmsu.edu/~jcook/Tools/pthreads/pthread_cond.html.
[Accessed: 11-Dec-2013].

5. T. Liu and E. D. Berger, “D THREADS : Efficient Deterministic
Multithreading,” in In Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles (SOSP ’11), 2011, pp.
327–336.

6. K. Lu, X. Zhou, X. Wang, W. Zhang, and G. Li, “RaceFree : An
Efficient Multi-Threading Model for Determinism,” in In
Proceedings of the 18th ACM SIGPLAN symposium on Principles
and practice of parallel programming (PPoPP ’13)., 2013, pp. 297–
298.

7. R. Crawfis, “‘Modern GPU Architecture’, Lecture Notes for CSE
694G Game Design and Project.”Ohio State University, Spring
2007.

8. E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “NVIDIA
Tesla: A unified graphics and computing architecture.,” IEEE
Microarchitecture, vol. 28, no. 2, pp. 39–55, 2008.

9. B. J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and
J. C. Phillips, “GPU computing,” Proceedings of the IEEE 96, no. 5,
pp. 879–899, 2008.

10. NVIDIA, “CUDA C Programming Guide,” no. July. NVIDIA
Corporation, 2013.

11. Wikipedia, “General-purpose computing on graphics processing
units,” 2013. [Online]. Available: http://tiny.cc/g4pw6w. [Accessed:
21-Nov-2013].

12. Wikipedia, “CUDA,” Wikipedia, The Free Encyclopedia., 2013.
[Online]. Available: http://en.wikipedia.org/wiki/CUDA. [Accessed:
22-Nov-2013].

13. J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable Parallel
with CUDA,” Queue, vol. 6, no. 2, pp. 40–53, 2008.

14. N. Gupta, “CUDA Programming, Complete Reference on CUDA,”
CUDA programming Blog, 2013. [Online]. Available:
http://tiny.cc/2niy6w. [Accessed: 22-Nov-2013].

15. OLCF, “Oak Ridge National Labs Accelerated Computing Guide:
CUDA Vector Addition,” Accelerator Programming, 2013.
[Online]. Available: https://www.olcf.ornl.gov/tutorials/cuda-vector-
addition/. [Accessed: 24-Nov-2013].

16. GWU, “Supercomputers - HPCL – The George Washington
University High Performance Computing Lab.,” 2013. [Online].
Available: http://hpcl2.hpcl.gwu.edu/index.php/supercomputers .
[Accessed: 25-Nov-2013].

Jameer Kotwal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (3) , 2017, 324-326

www.ijcsit.com 326

